The understanding of proppant flow through fractures is critical in evaluating the performance of hydraulic fracturing operations. As a continuation of our experimental efforts devoted to understanding how proppant flows in rough vertical fractures, in this paper, we examine the effect of injection parameters on the proppant transport in rough vertical fractures. The effects of polymer concentration, injection rate, proppant concentration, and type of proppant were investigated in detail. Experimental results show that, in general, two types of settling patterns can be observed in the proppant transport in a rough fracture: sand-dune settling pattern and tree-like settling pattern. The following conditions tend to suppress the tree-like settling behavior of proppants in the rough fracture: a higher density of the proppants, a lower viscosity of the polymer solution, and a lower injection rate. This is attributed to a higher settling velocity of the proppants in the fracture under these conditions. A sufficiently high polymer concentration is needed to enable effective proppant flow in rough fractures. In general, the relative coverage of proppants increased dramatically as the polymer concentration increased, implying that the higher viscosity of fracturing fluid could enhance the slurry's ability to place more proppant vertically into the fracture and help to maintain a better conductivity after fracturing treatment. A sufficiently high injection rate of the slurry is also needed to enable effective proppant flow in rough fractures. At certain low injection rates, the proppants carried by a low polymer solution might not exhibit a tree-like settling pattern, diminishing the effect of roughness on the proppant transport. This means that even in rough fractures, the tree-like settling pattern of the proppants did not necessarily occur for sure; the injection rate should be properly selected to enable such phenomenon. With other conditions being kept constant, a higher proppant loading led to a higher final relative coverage of the proppants in the rough fractures. But if the injection rate used for delivering the proppants is not sufficiently high, we may encounter injectivity issues; in our lab experiments, this caused the choking of the pump. The heavier proppant (ceramic proppants) in the rough fracture models tended to suppress the tree-like settling pattern that was experienced by the lighter proppant (silica sands). This is attributed to the larger density of the ceramic proppants, leading to a larger settling velocity. In order to maximize the spreading of a given proppant over a rough fracture model, we should determine the proper values of all the essential injection parameters (including polymer solution, injection rate, proppant concentration) by striking a good balance among them. The conclusions obtained in this study shed light on how to optimize slurry injection parameters to achieve an optimal proppant-filling ratio during hydraulic fracturing.