The classification of White Blood Cells (WBCs) is crucial for diagnosing diseases, monitoring treatment effectiveness, and understanding how the immune system functions. In this paper, we propose a deep learning approach to classify WBCs using Super Resolution Generative Adversarial Network (SRGAN) and Visual Geometry Group 19 (VGG19). Firstly, microscopic images of WBCs are generated using the SRGAN to obtain more precise and high-resolution images, which are then classified with a pretrained VGG19 classifier. Low-resolution (LR) images are inputted into the generator of SRGAN, and its discriminator compares the High-resolution (HR) image with LR, generating super-resolution images to minimize misclassification risks. A large dataset of 12,447 images containing four classes of WBCs (Eosinophil, Lymphocyte, Monocyte, and Neutrophil) is utilized to train and validate our proposed model. Following extensive experimental analysis, our proposed model achieves a test accuracy of 94.87 %, surpassing traditional Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Hybrid CNN-RNN models, and other conventional approaches. The generated images of SRGAN overcome challenges associated with misclassification due to the poor resolution of microscopic images, while the use of a pretrained model as a classifier reduces classification complexity. The source code of the entire work is available at https://github.com/Jannatul-Ferdousi/SRGAN_VGG19_WBC.git.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access