Abstract

Generating granular-scale surface albedo data is extremely important for solar photovoltaic site planning and to optimise renewable energy yield of bifacial panel installations. The albedo effect brings about a significant increase in power in bifacial photovoltaic systems, compared to their mono-facial counterparts, since the spectral response of bifacial solar panels correlates with the incident solar radiation wavelength on the back of the panel, to provide additional power generation capacity. Thus, harnessing the albedo data at relatively local scales is critical towards boosting solar power generation and providing greater power density in local electricity grids. This paper develops novel modelling approaches to produce high-resolution spectral albedo imagery across the Visible and Near Infrared (VNIR) bands, using the Wavelet-Fusion super-resolution model (i.e., Wavelet-FusionSR) trained with the Learned Gamma Correction approach by applying satellite image enhancement methodology. The proposed Wavelet-FusionSR model utilises the low-resolution moderate-resolution Imaging Spectroradiometer (MODIS) as well as high-resolution multi-spectral Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) satellite images, as critical inputs and ground-truth imagery, respectively, in order to perform sensor-to-sensor deep downscaling, without employing any synthetic or low-resolution satellite imagery data pairs. To augment the proposed deep learning algorithm across the decomposed sub-images of low-resolution inputs, we integrate local and global feature representation learning to train the proposed Wavelet-FusionSR model with Cauchy loss functions. In comparison with five competing benchmark models, the proposed Wavelet-FusionSR model demonstrates performance superiority using quantitative image downscaling metrics and visual assessments of the downscaled images for the visible band of solar radiation. The proposed Wavelet-FusionSR model yielded a Mean Square Error (MSE) of 0.00017, Signal-to-noise-ratio (PSNR) of 37.80, Structural Similarity Index (SSIM) of 0.999 and combined loss, MS-SSIMLoss, based on Multi Structural Similarity and Mean Absolute Error of 2.354 for the Visible Band images, and an MSE of 0.0014, PSNR of 28.43, SSIM of 0.999 and MS-SSIMLoss of 7.426 for the NIR spectral bands, demonstrating high efficacy of the proposed Wavelet-FusionSR method. The Wavelet-FusionSR method therefore attains high-resolution spectral albedo imagery outputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.