Titanium dioxide (TiO2), belonging to the family of transition metal dichalcogenides (together with molybdenum disulfide (MoS2) and tungsten disulphide (WS2)), is well known for its solid lubricating behaviour. Thin films of TiO2 exhibit extremely low coefficient of friction in dry environments, and are typically applied by mixed in oil, grease or impregnated into porous matrix of powdered materials. Current researches in many areas imply the using of different types of nanoparticles in the composition of oily lubricants. Results of these researches upon the friction couples show that nanoparticles contained by lubricant can improve the tribological properties, the friction-wear reduction and the lubrication effect. When nanomaterials are used to improve lubrication effect, the selection of metal is very important. In this paper, the authors chose for investigating the tribological properties of two samples of TiO2 with the mean diameter of 15 nm (n-TiO2) and 250 nm (m-TiO2), under different friction conditions. The tribological properties of TiO2 nanoparticles mixed in the ecological lubricant oil were investigated using a four-ball tribometer and a block-on-ring tribometer and show the lowering of the friction coefficient in comparison to the lubricant base oil. The finally obtained lubricant is not considered toxic for the environment. The analyses of surface film composition, characterized with the help of X-ray photoelectron spectroscope (XPS) and scanning electron microscopy (SEM) images showed that the deposed nanoparticles form a protective film (TiO3) allowing for an increase in the load capacity of friction couple. XPS and SEM were used to examine the morphology of the wear track, after the four-ball experiment. The main advantage of the nanoparticles is ascribed to the release and furnishing of the nanoparticles from the valley onto the friction metal surface and their confinement at the interface. The TiO2 nanoparticles showed lower frictions coefficient and higher wear resistance as compared to the common TiO2 particles (about 1.5 μm in diameter(c- TiO2)) on a four-ball machine, which were caused by the microstructure of the protective film and serve as perfect intermediate lubricants between the contact surfaces.