Introduction: Perinatal asphyxia initiates cytokine release and complement activation with risk of brain damage. We assessed the effect of nicotine on innate immunity and hypothesized that nicotine infusion in a newborn piglet model of asphyxia would decrease the immune response and be neuroprotective. Methods: Newborn piglets (n = 41) were randomized to one of three groups after hypoxia: two groups receiving nicotine, (1) 18 µg/kg/h (n = 17), (2) 46 µg/kg/h (n = 15), and (3) control group receiving saline (n = 9). C3a, IL-6, TNF, and IL-10 were measured in plasma and IL-6 and IL-8 in microdialysis fluid from cerebral periventricular white matter, using immuno-assays. Results: Plasma C3a and IL-6 increased significantly from start to end hypoxia (mean 4.4 ± 0.55 to 5.6 ± 0.71 ng/mL and 1.66 ± 1.04 to 2.68 ± 0.71 pg/mL, respectively), while IL-10 and TNF increased significantly after 4 h (mean 1.4 ± 1.08 to 2.9 ± 1.87 and 3.3 ± 0.67 to 4.0 ± 0.58 pg/mL, respectively) (p < 0.001 for all). IL-6 increased significantly (p < 0.001) in microdialysis samples from end hypoxia to end experiment (mean 0.65 ± 0.88 to 2.78 ± 1.84 ng/mL). No significant differences were observed between the nicotine groups and the control group neither in plasma nor in microdialysis samples. Conclusion: Hypoxia leads to rapid release of cytokines in plasma and cerebral microdialysis fluid, and complement activation measured on C3a. However, low-dose nicotine administration did not affect the immune response.
Read full abstract