Boron, a crucial element for plant growth, has been demonstrated to mitigate cadmium (Cd) absorption in rice seedlings. However, its impact on Cd accumulation in rice grains and the underlying regulatory mechanisms remain poorly understood. The current study explored the roles of boron in reducing Cd accumulation and promoting ripening in rice through pot and hydroponic experiments. The results revealed that the basal boron application (1.5 mg kg-1) decreased grain Cd concentration by 61.1%, primarily due to the synergistic effects of inhibited Cd uptake and transport, along with increased maturation. Boron mitigated the root Cd2+ influx by 32.4% and transport factors by 36.0-47.3% primarily by downregulating the expression of OsNramp5, OsIRT1, and OsHMA2. Moreover, boron enhanced the activities of key sucrose-metabolizing enzymes and increased the relative expression levels of genes associated with sugar metabolism and transport, thereby shortening the rice growth period from 132 to 120 d. Field experiment confirmed that boron application decreased rice grain Cd concentration by 47.7% while promoting earlier maturation. This study elucidates the mechanism behind boron's ability to lower grain Cd levels and highlights its potential as an effective agronomic approach to mitigate food safety risks in rice grown on Cd-contaminated paddy soils.
Read full abstract