When an ice-class propeller is operating in an ice-covered environment, as some ice blocks slide along the ship hull in front of the propeller blades, the inflow ahead of the propeller will become non-uniform. Consequently, the excitation force applied to the blades will increase and massive cavitation bubbles will be generated. In this paper, a hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation method and Schnerr–Sauer cavitation model are used to investigate the hydrodynamics, excitation force, cavitation evolution and flow field characteristics of the propeller in ice blockage conditions. The results show that the numerical method adopted has a relatively high accuracy and the hydrodynamic error is controlled within 3.0%. At low cavitation numbers, although the blockage distance decreases, the cavitation phenomenon is still severe and the hydrodynamic coefficients hardly increase accordingly. Ice blockage causes a sharp increase in cavitation. When the distance is 0.15 times the diameter, the cavitation area amounts to 20% of the propeller blades. As the advance coefficient grows, the total cavitation area diminishes, while the cavitation area of the blade behind ice does not decrease, resulting in an increment in excitation force. Ice blockage also causes backflow in the wake. At this time, the largest backflow appears at the tip of the blade behind the ice. The higher the advance coefficient, the more significant the high-pressure area of the pressure side and the greater the pressure difference, causing the excitation force to rise sharply. This work offers a positive theoretical basis for the anti-cavitation design and excitation force suppression of propellers operating in icy regions.
Read full abstract