PurposeTo investigate the variation of lamina cribrosa (LC) structure based on the baseline intraocular pressure (IOP) in eyes with primary open-angle glaucoma (POAG) and healthy individuals using swept-source optical coherence tomography.MethodsA total of 108 eyes with POAG and 61 healthy eyes were recruited. Based on the baseline IOP, the POAG eyes were divided into higher-baseline IOP (HTG; baseline IOP > 21 mmHg, n = 38 eyes) and lower-baseline IOP (NTG; baseline IOP ≤ 21 mmHg, n = 70 eyes). The anterior laminar insertion depth (ALID), mean LC depth (mLCD), and the LC curvature index (mLCD–ALID) were measured, and compared among the three groups. The regional variation of LC structure was evaluated by vertical-horizontal ALID difference.ResultsThe mLCD and LC curvature index were greatest in HTG eyes (520.3 ± 123.0 and 80.9 ± 30.7 μm), followed by NTG (463.2 ± 110.5 and 64.5 ± 30.7 μm) and healthy eyes (382.9 ± 107.6 and 47.6 ± 25.7 μm, all P < 0.001). However, there were no significant difference in ALID between HTG and NTG eyes. The vertical-horizontal ALID difference was larger in NTG eyes (72.8 ± 56.2 μm) than in HTG (32.7 ± 61.4 μm, P = 0.004) and healthy eyes (25.5 ± 34.8 μm, P < 0.001).ConclusionsLamina cribrosa position and curvature differed in POAG eyes with low and high IOP. This would support the theory that IOP induced biomechanical effects on the optic play a role on glaucoma.
Read full abstract