Flooding show situation where areas that are not usually inundated, such as farmland and settlements, and city district areas, become inundated due to water. Floods can to occur when the flow of water on rivers or waste channels overrun its normal measurements. This study describes the K-Means and Fuzzy C-Means Algorithm methods for clustered flood-prone areas built on Districts in Kutai Kartanegara Regency. This research begins with data collection in the character of rainfall, land elevation, the number of victims affected, the quantity of damaged houses, the quantity of damage to facilities and the quantity of flood events. Before the data is processed using these two methods, data normalization will be carried out in a dataset which aims to shape the data into positional values from the same range. K-Means and Fuzzy C-Means are accustomed to identifying groups in each sub-district in Kutai Kartanegara Regency that have a level of vulnerability to floods. At this stage, 3 initial clusters were carried out, namely high, medium, and low vulnerability clusters. The validity test produces a Silhouette Index value of 0.574283589 and a Partition Coefficient Index of 0.78905. The outcome of the K-Means method with the standard deviation within and between clusters are 0.5131 and the Fuzzy C-Means method for the standard deviations within and between clusters is 0.3489. based uppon value of the silhouette index, partition coefficient index and standard deviation within and between clusters it results that Fuzzy C-Means is the best method of this study.
Read full abstract