Measles is a highly contagious cause of febrile illness typically seen in young children. It is transmitted primarily through respiratory droplets and small-particle aerosols and can remain viable in the air. Despite the availability of an effective vaccine, measles remains a major global issue, particularly in regions with low vaccination rates. This study aimed to quantify the airborne transmission risk of the measles virus in various indoor environments. Using indoor carbon dioxide (CO2) levels, we estimated the probability of airborne transmission and the basic reproduction number (Ro) in four hypothetical indoor scenarios, including restaurants, mass gathering events, homes, and business meetings, based on the modified Wells-Riley model. The relationship between airborne transmission rates and indoor CO2 concentrations was visualized, with and without mask usage. Without masks, at an indoor CO2 concentration of 1,000 ppm, the airborne transmission rates were high in homes (100.0%) and business meetings (100.0%) and moderate in restaurants (45.6%) and live events (30.6%). By contrast, the Ro was high in audience-participatory live events (60.9%) and restaurants (13.2%), indicating a higher risk of cluster infections. In all indoor environmental scenarios, a positive linear relationship was found between the risk of airborne transmission and indoor CO2 levels. The risk of airborne transmission varied significantly across scenarios, which was influenced by various parameters, such as mask usage, quality of ventilation, conversation, and exposure duration. This model suggests that the risk of airborne transmission of measles can be easily predicted using a CO2 meter.
Read full abstract