Abnormally low tensile ductility has often been reported for the friction-stir-welded (FSWed) dissimilar metals. The mechanism(s) for such a low tensile ductility has, however, not been established. In the present study, the tensile behavior of FSWed A356-T6/Al 6061-T651 bi-alloy plate was studied to understand the underlying mechanism for the reduced tensile ductility with the friction stir welding of dissimilar metals based on thorough micrographic and fractographic observations. The present study also demonstrated that the tensile ductility of the friction-stir-welded A356-T6/Al 6061-T651 bi-alloy specimen was substantially lower than that of the weighted mean value of the uni-alloy counterparts, including A356-T6 and Al 6061-T651 alloys. Interestingly, a relatively large number of acicular shaped Si particles were observed locally in the FSWed bi-alloy specimens compared to the dominantly globular shaped particles in the FSWed uni-alloy counterpart. Moreover, these acicular shaped Si particles were found to be mostly aligned parallel to the tool-rotating direction. Such agglomerated areas of the preferentially oriented, acicular Si particles in the present study appeared to serve as initiation sites for the tensile fracture and eventually caused low tensile ductility.
Read full abstract