Ceramic fiber (CF) is a novel thermally resistant material with the potential to improve the high-temperature performance of asphalt mixture. In this study, asphalt mixtures with 0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% CFs were prepared. The Marshall test, wheel tracking test, Marshall immersion test, freeze-thaw splitting test, and low-temperature bending test were conducted to evaluate the performance of the CF-modified asphalt mixture. The morphologies of these asphalt mixtures were observed using scanning electron microscopy to analyze the modification mechanism. The results showed that the CFs could improve the mechanical properties, high-temperature stability, moisture susceptibility, and low-temperature cracking resistance of asphalt mixture, with the optimum CF content being 0.4%. Further microscopic analysis showed that the CFs improved the performances of asphalt mixture through forming three-dimensional network structure, asphalt absorption, bridging cracks, and pulling-out effect.
Read full abstract