In recent years, nanozymes have been widely used in the field of biosensing and food safety testing due to their advantages of low cost, high stability, easy modification and adjustable catalytic activity. However, how to reduce the signal interference generated by reducing substances, macromolecules and colored substances in the food matrix in nanozymes-based colorimetric sensing is still a major challenge. In this paper, using Listeria monocytogenes as a model analyte, sodium sulfonyl methacrylate (SBMA) polymers were modified onto cotton swabs by photothermal polymerization and combined with Listeria monocytogenes-specific aptamer (Apt1) to prepare swabs that can specifically capture and isolate Listeria monocytogenes from complex matrices (SBMA/Apt1 cotton swab). In addition, in combination with the inhibitory effect of the aptamer (Apt2) on the oxidase activity of Mn3O4 NPs, a colorimetric biosensor based on nanozymes that can quantitatively, sensitively, and specifically identify Listeria monocytogenes in food products was constructed. The results showed that the colorimetric signal of the method was linear with the concentration of Listeria monocytogenes in the range of 2.83–2.83 × 105 CFU/mL, and the limit of detection was 2.64 CFU/mL, which can be used for the detection of Listeria monocytogenes in complex environments and food samples.
Read full abstract