Vaned diffusers are extensively used in centrifugal pumps, but the influence of vane height on internal flow field and overall performance is not explicit. This paper mainly presents numerical investigation on influence mechanism of diffuser vane height in a single-stage centrifugal pump. The head values were carried out on a low specific speed centrifugal pump equipped with different diffuser vane height by numerical simulation and experimental method. And the deviation between numerical results and experimental results were <5%. The diffuser vane height h/b ratio is changed as 0, 0.3, 0.4, 0.5, 0.6, 0.8, and 1 in this study. The numerical analysis shows that reducing diffuser vane height could eliminate the vortex which appears at tongue region. Meanwhile, the influence of rotor-stator interaction was reduced by reducing the vane height. Consequently, the energy loss in the volute and the diffuser could both be decreased at design flow point and over flow point. In the other hand, the circumferential velocity at partial flow point gets larger which could lead to large frictional loss. In general, reducing the diffuser vane height at design and over flow point could improve the output work of impeller.