Groundwater contamination by heavy metals is a pressing environmental concern, particularly in regions highly dependent on groundwater as a freshwater source. While Malaysia primarily relies on river water, certain states and islands depend on groundwater for their supply. Research on heavy metal contamination in Malaysia’s groundwater remains limited, making it crucial to study the distribution and mobility of contaminants to develop appropriate remediation strategies. In addition to natural sources, anthropogenic activities such as landfills, mining, and the use of fertilizers contribute significantly to heavy metal pollution in groundwater. Factors like rainfall, fluctuating groundwater levels, and low soil pH can exacerbate heavy metal leaching into aquifers. Various models and techniques, including 2D resistivity imaging and MODFLOW, are used to assess groundwater flow and contaminant transport. These models suggest that contaminant concentrations decrease with increased depth and radial distance from pollution sources such as landfills and mining areas. The health risks associated with heavy metal exposure through groundwater consumption are significant, necessitating effective remediation strategies. Phytoremediation is an economical solution for groundwater containing low concentrations of heavy metals, while permeable reactive barriers may be suitable for more complex cases, pending detailed site investigation. This review aims to examine the current state of knowledge on heavy metal contamination in Malaysia’s groundwater, focusing on sources, distribution patterns, and movement of pollutants. It also seeks to evaluate existing remediation methods, including phytoremediation and permeable reactive barriers, while identifying gaps in research, particularly concerning risk assessments and heavy metal speciation.