This study addresses the predominant challenge of very low-resolution satellite images in remote sensing applications, a common issue in satellite image-based surveillance. Existing satellite image recognition algorithms struggle with such low-resolution images, and traditional Super-Resolution (SR) techniques fall short for very low-resolution cases. We propose the Progressive Satellite Image Super-Resolution (PSISR) model to bridge this gap. Unlike current learning-based SR methods, the PSISR model specifically targets very low-resolution satellite images. In satellite image super-resolution, problems with feature fusion that result in image noise, blind spots, poor perceptual quality, and checkboard artifacts are encountered during the reconstruction process. Current models try to improve perceptual quality, but they frequently show challenges in attaining acceptable outcomes because of losses during reconstruction. Using a combined loss function, correlation filters, and a loss-aware upscaling network layer, the PSISR model presents a revolutionary methodology. The model adopts a cascading structure with dense skip connections, sequentially upscaling images by factors of 2×, 4×, and 8× through three modules. To validate the model's superiority, a study is conducted, confirming its effectiveness compared to baseline models and also training the other models using the available dataset to prove the effectiveness of the model. The PSISR model effectively addresses the challenge of extracting more features with minimal losses, resulting in high magnification during reconstruction. Our method outperforms state-of-the-art techniques, including Swin2-MoSE, MambaFormer, SRFBN and RCAN, with a PSNR improvement of up to 0.4 dB and a 0.003 SSIM enhancement across various datasets. This demonstrates the effectiveness of our approach in producing high-quality outputs, achieving a 99.25 % correlation efficiency between the generated and original images.
Read full abstract