Black-blood MRI is a promising imaging technique for assessing vascular diseases (e.g., stroke). Vessel wall dynamic characterization using black-blood cine MRI has been recognized as an effective tool for studying vascular diseases. However, acquiring time-resolved 3D vessel wall images often requires a long acquisition time, which limits its clinical utility. In this work, we develop a new method to achieve rapid, time-resolved 3D black-blood cine MRI. Specifically, the proposed method performs (k, t)-space undersampling to accelerate the volumetric data acquisition process. Moreover, it utilizes an image reconstruction method with low-rank and sparsity constraints to enable high-quality image reconstruction from highly-undersampled data. We validate the performance of the proposed method with 3D in vivo black-blood cine MRI experiments and show representative results to demonstrate the utility of the proposed method.
Read full abstract