SummaryCalves from three breeds, Brahman, Hereford × Shorthorn (HS) and Brahman × HS (BX), were divided equally into two groups, one of which was treated every 3 weeks from birth onwards to control ticks and gastrointestinal helminths, and one of which was untreated. Mortalities, growth rates and levels of resistance to environmental stresses that affected both mortality and growth under grazing conditions were recorded for all animals up to weaning (6 months) and for all males up to 15 months of age. The Brahmans were the most and the HS were the least resistant to environmental stresses, each of which was shown to depress growth in proportion to its magnitude and to contribute to the high mortalities of the HS. All breeds responded positively to parasite control with the greatest response in both survival and growth in the HS breed and the least response in the Brahman breed.Samples of males from the various breed-treatment groups were taken into pens where they were protected from environmental stresses and fed both low-quality pasture hay and high-quality lucerne hay ad libitum. Measurements were made of fasting metabolism, maintenance requirement, voluntary food intake and gain, variables related to the growth potential of each animal. The HS animals had the highest whilst the Brahmans had the lowest values for each variable.However, despite their low growth potential, the Brahmans had the highest growtli rate, and the HS, despite their high growth potential, had the lowest growth rate, when growth was measured in the presence of all environmental stresses. When parasites were controlled, growth rates were highest for the BX, the breed with intermediate growtli potential, and did not differ between the HS and Brahmans. These interactions arose because of the different contributions of resistance to environmental stresses and growth potential to growth rate measured at the different levels of environmental stresses. The relevance of these interactions to breed evaluation and cross-breeding is considered.Growth potential and resistance to environmental stresses were negatively correlated both between and within breeds, though the latter was biased by the effects of compensation. The influence of these relationships on the likely outcome of selection for increased growth rate, both between and within breeds, is discussed.