The ITER baseline design relies on ECCD to stabilize confinementdegrading disruptive NTMs [1]. However, the EC power required will take a toll on the fusion gain Q. The MDC-8 group (in existence since 2005) has the goal to provide a range of data to benchmark the Rutherford tearing stability equation for NTM evolution, allowing predictions for ITER ECCD requirements to be validated. Experimental contributors have included ASDEX UPGRADE, DIII-D, EAST, FTU, HL-2A, JT-60U, KSTAR, TEXTOR and TCV. While any m/n tearing mode island can reduce confinement, the m=2, n=1 mode at q=2 is particularly damaging. This mode is at a relatively large minor radius in the low q95∼3 safety factor of ITER and thus close to the resistive wall; with the relatively low rotation in ITER (large inertia, small torque), an uncontrolled mode will rapidly lock at low tearing mode amplitude with subsequent disruption [2]. While progress is being made in modeling of the stability space and control [3] and experiments are promising, implementation still needs to be successfully demonstrated experimentally.The ITPA consensus is that ITER's 24 1-MW gyrotrons will provide more than sufficient EC power from the upper launch mirrors to drive narrow (but not too narrow) ECCD at q=2 for stabilization, with good alignment. Broadening of the ECCD, by edge turbulence for example, is a concern that would demand more EC power but also make alignment easier. Pre-emption at lower CW power or active stabilization by early mode onset detection and higher peak (possibly lower average) pulsed power are issues still under continuing investigation.Most EC-NTM experimental studies so far are at relatively high q95 with smaller radius at q=2 and thus higher Te for better current drive efficiency, higher rotation and weaker wall coupling. DIII-D, for example, is now well poised to pursue ECCD NTM stabilization at both low q95 and at low rotation in the 2017 campaign. The MDC-8 as a whole is proceeding to narrow the experimental focus for a comparison of observations from different devices. This will establish the physics basis for successful stabilization in ITER.
Read full abstract