Abstract

Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-Ip torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-Ip to up to co-Ip values of 1-1.3 Nm. This co-Ip torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of νped* and βNped. These discharges exhibited confinement quality H98y2=1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q95=3.4 have reached fusion gain values of G=βNH89/q952=0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-Ip torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.