In this study, tubular zirconia composite membranes (ZM1-ZM3) were developed using low-cost tubular substrate which was prepared utilizing naturally available clay materials by an extrusion approach. The zirconia nanoparticles were encrusted on a low-cost tubular substrate using spray pyrolysis technique. The membranes were investigated for their biocompatibility in addition to pore size, chemical stability, water permeability, porosity, contact angle, thermogravimetric (TGA), and X-ray diffraction (XRD). Water permeability, pore size and porosity of optimized membrane (ZM3) were 3.05 × 10–4 ± 0.03 L.m-2.h-1.Pa-1, 119 ± 0.57 nm and 36 ± 0.12 %, respectively. Platelets adhesion and protein adsorption were measured to be 4630 ± 46 platelets.mm-2, and 1.05 ± 0.02 μg.cm-2 respectively, while the activated partial thromboplastin time (APTT) and prothrombin time (PT) were 80 ± 0.51 s and 27 ± 0.26 s, respectively. Complement activation C3 and C4 concentrations were assessed to be 76.2 ± 0.88 mg.dL-1 and 21.57 ± 0.80 mg.dL-1, respectively and hemolysis ratio was 0.31 ± 0.01 %. Moreover, the membrane had a considerable antifouling nature with a flux recovery ratio of 89.22 ± 0.58 %. Protein retention was found to be 81.14 ± 0.58 %, in addition to outstanding sieving coefficients of uremic toxins like urea (0.95 ± 0.005), creatinine (0.93 ± 0.004), and phosphate (0.90 ± 0.004). These findings suggest that the produced tubular zirconia composite membrane has the potency for hemofiltration.
Read full abstract