Abstract The mercury adsorption properties of carbon-based materials prepared from jacaranda (Jacaranda mimosifolia) and guava (Psidium guajava) seed wastes are reported and compared in this paper. These adsorbent samples were obtained via pyrolysis and hydrothermal carbonization. Mercury adsorption equilibrium was studied at pH 4 and 20–40 °C, and the adsorption enthalpy changes were calculated for all adsorbent samples. The results showed that jacaranda-based materials contained a higher amount of acidic functional groups than guava seed-based adsorbents, and consequently, their mercury adsorption properties were better. The surface area of these adsorbents was <10 m2/g thus being classified as low-porosity materials. Elemental analysis indicated that all adsorbents were mainly composed of oxygen (4–25%) and carbon (75–95%). The calculated adsorption capacities at saturation of the best adsorbent were 18.05–30.09 mg/g under the tested experimental conditions. Statistical physics calculations also indicated that the adsorption mechanism of HgCl2 species was multi-molecular and endothermic. Ligand exchange and van der Waals forces were involved in generating the mercury–adsorbent interface. These results highlight the importance of comparing and optimizing biomass thermochemical conversion routes to tailor the surface properties of adsorbents used for water purification.
Read full abstract