Soil and groundwater pollution from industrial and agricultural activities has become a global concern. This study therefore investigates the occurrence, sources, and transport mechanisms of polycyclic aromatic hydrocarbons (PAHs) in the soil-groundwater system of a closed refinery. Field investigations and laboratory column experiments revealed widespread PAH contamination in both groundwater and soil, with higher concentrations near the groundwater level (6.45–8.75 m). PAHs in soil and groundwater were predominantly low and medium molecular weight compounds (LMW and MMW), originated from petroleum leakage and coal combustion. The region’s soil, primarily composed of loess and gravel with low total organic carbon (TOC) content (mean 0.07 %), showed a positive correlation between PAH concentration and TOC/clay content, while sand content had no significant impact. Groundwater fluctuations influence PAH accumulation at the soil-groundwater interface (SGI), which may suggest potential for increased migration under varying hydraulic conditions. This vertical migration offers new insights into contaminant transport models in groundwater systems, particularly for arid regions, and could inform future remediation strategies for similar contamination scenarios.
Read full abstract