Nitrogen levels and distribution in the rhizosphere strongly regulate the root architecture. Nitrate is an essential nutrient and an important signaling molecule for plant growth and development. Hydroponic experiments were conducted to investigate the differences in endodermal suberization in tobacco (Nicotiana tabacum L.) roots at three nitrate levels. Nitrogen accumulation was detected in the roots, shoots, and xylem sap. Nitrate influx on the root surface was also measured using the non-invasive self-referencing microsensor technique (SRMT). RNA-Seq analysis was performed to identify the genes related to endodermal suberization, nitrate transport, and endogenous abscisic acid (ABA) biosynthesis. The results showed that root length, root-shoot ratio, nitrate influx on the root surface, and NiA and NRT2.4 genes were regulated to maintain the nitrogen nutrient supply in tobacco under low nitrate conditions. Low nitrate levels enhanced root endodermal suberization and hence reduced the apoplastic transport pathway, and genes from the KCS, FAR, PAS2, and CYP86 families were upregulated. The results of exogenous fluridone, an ABA biosynthesis inhibitor, indicated that suberization of the tobacco root endodermis had no relevance to radial nitrate transport and accumulation. However, ABA enhances suberization, relating to ABA biosynthesis genes in the CCD family and degradation gene ABA8ox1.
Read full abstract