Many low molecular weight (LMWG) hydrogels have been widely used as scaffolds and substrates due to their particular structures and properties. However, LMWG hydrogels generally show a weak mechanical performance which confines their applications in the field of tissue engineering. Here, we report a new kind of hydrogel derived from the combination of a C2-phenyl-derived gelator and a polysaccharide (alginate). Rheology testing showed that the elastic modulus of C2-phenyl-derived hydrogels could be increased by nearly one order of magnitude by interpenetrating them with an alginate–calcium network. Increasing the concentrations of the gelator and calcium ions or decreasing the concentration of alginate will lead to an increase of the elastic modulus of the hybrid hydrogels. Imaging and spectroscopic analysis confirmed that the surface roughness and morphology of the hybrid hydrogels were almost the same with that of a pure C2 hydrogel. Significant improvements in cell adhesion and spreading were observed on the reinforced hydrogels. The new hybrid hydrogels have great potential for tissue engineering applications in vivo.
Read full abstract