Traditional algorithms for compressive sensing recovery are computationally expensive and are ineffective at low measurement rates. In this paper, we propose a data-driven noniterative algorithm to overcome the shortcomings of earlier iterative algorithms. Our solution, ReconNet , is a deep neural network, which is learned end-to-end to map block-wise compressive measurements of the scene to the desired image blocks. Reconstruction of an image becomes a simple forward pass through the network and can be done in real time. We show empirically that our algorithm yields reconstructions with higher peak signal-to-noise ratios (PSNRs) compared to iterative algorithms at low measurement rates and in presence of measurement noise. We also propose a variant of ReconNet, which uses adversarial loss in order to further improve reconstruction quality. We discuss how adding a fully connected layer to the existing ReconNet architecture allows for jointly learning the measurement matrix and the reconstruction algorithm in a single network. Experiments on real data obtained from a block compressive imager show that our networks are robust to unseen sensor noise.