Background In 1968 the first antenatal diagnosis of Down's syndrome was made and screening on the basis of selecting women of advanced maternal age for amniocentesis was gradually introduced into medical practice. In 1983 it was shown that low maternal serum alpha fetoprotein (AFP) was associated with Down's syndrome. Later, raised maternal serum human chorionic gonadotrophin (hCG), and low unconjugated oestriol (uE3) were found to be markers of Down's syndrome. In 1988 the three biochemical markers were used together with maternal age as a method of screening, and this has been widely adopted. PRINCIPLES OF ANTENATAL SCREENING FOR DOWN'S SYNDROME: Methods of screening need to be fully evaluated before being introduced into routine clinical practice. This included choosing markers for which there is sufficient scientific evidence of efficacy, quantifying performance in terms of detection and false positive rates, and establishing methods of monitoring performance. Screening needs to be provided as an integrated service, coordinating and managing the separate aspects of the screening process. SERUM MARKERS AT 15-22 WEEKS OF PREGNANCY: A large number of serum markers have been found to be associated with Down's syndrome between 15 and 22 weeks of pregnancy. The principal markers are AFP, hCG or its individual subunits (free alpha- and free beta-hCG), uE3, and inhibin A. Screening performance varies according to the choice of markers used and whether ultrasound is used to estimate gestational age (table 1). When an ultrasound scan is used to estimate gestational age the detection rate for a 5% false positive rate is estimated to be 59% using the double test (AFP and hCG), 69% using the triple test (AFP, hCG, uE3), and 76% using the quadruple test (AFP, hCG, uE3, inhibin A), all in combination with maternal age. Other factors that can usefully be taken into account in screening are maternal weight, the presence of insulin dependent diabetes mellitus, multiple pregnancy, ethnic origin, previous Down's syndrome pregnancy, and whether the test is the first one in a pregnancy or a repeat. Factors such as parity and smoking are associated with one or more of the serum markers, but the effect is too small to justify adjusting for these factors in interpreting a screening test. Urinary markers and fetal cells in maternal blood Urinary beta-core hCG has been investigated in a number of studies and shown to be raised in pregnancies with Down's syndrome. This area is currently the subject of active research and the use of urine in future screening programmes may be a practical possibility. Other urinary markers, such as total oestriol and free beta-hCG may also be of value. Fetal cells can be identified in the maternal circulation and techniques such as fluorescent in situ hybridisation can be used to identify aneuploidies, including Down's syndrome and trisomy 18. This approach may, in the future, be of value in screening or diagnosis. Currently, the techniques available do not have the performance, simplicity, or economy needed to replace existing methods. Demonstration projects Demonstration projects are valuable in determining the feasibility of screening and in refining the practical application of screening. They are of less value in determining the performance of different screening methods. Several demonstration projects have been conducted using the triple and double tests. In general, the uptake of screening was about 80%. The screen positive rates were about 5-6%. About 80% of women with positive screening results had an invasive diagnostic test, and of those found to have a pregnancy with Down's syndrome, about 90% chose to have a termination of pregnancy. ULTRASOUND MARKERS AT 15-22 WEEKS OF PREGNANCY: There are a number of ultrasound markers of Down's syndrome at 15-22 weeks, including nuchal fold thickness, cardiac abnormalities, duodenal atresia, femur length, humerus length, pyelectasis, and hyperechogenic bowel. (ABSTRA