ConspectusOver the past decade, it has been shown that surface plasmons can enhance photoelectric conversion in photovoltaics, photocatalysis, and other optoelectronic applications through their plasmonic absorption and damping processes. However, plasmonically enhanced devices have yet to routinely match or exceed the efficiencies of traditional semiconductor devices. The effect of plasmonic losses dissipates the absorbed photoenergy mostly into heat and that has hampered the realization of superior next-generation plasmonic optoelectronic devices. Several approaches are being explored to alleviate this situation, including using gain to compensate for the plasmonic losses, designing and synthesizing alternative low-loss plasmonic materials, and reducing activation barriers in plasmonic devices and physical thicknesses of photoabsorber layers to lower the plasmonic losses. A newly proposed plasmon-induced interfacial charge-transfer transition (PIICTT) mechanism has proven to be effective in minimizing energy loss during interfacial charge transfer. The PIICTT leads to a damping of metallic plasmonics by directly generating excitons at the plasmonic metal/semiconductor heteronanostructures. This novel concept has been proven to overcome some of the limitations of electron-transfer inefficiencies, renewing a focus on surface plasmon damping processes with the goal that the plasmonic excitation energies of metal nanoparticles can be more efficiently transferred to the adjacent semiconductor components in the absence and presence of an effective interlayer of carrier-selective blocking layer (CSBL). Several theoretical and experimental studies have concluded that efficient plasmon-induced ultrafast hot-carrier transfer was observed in plasmonic-metal/semiconductor heteronanostructures. The PIICTT mechanism may well be a general phenomenon at plasmonic metal/semiconductor, metal/molecule, semiconductor/semiconductor, and semiconductor/molecule heterointerfaces. Thus, the PIICTT presents a new opportunity to limit energy loss in plasmonic-metal nanostructures and increase device efficiencies based on plasmonic coupling. The nonradiative damping of surface plasmons can impact the energy flux direction and thereby provide a new process beyond light trapping, focusing, and hot carrier creation.In this Account, we draw much attention to the benefits of interfacial plasmonic coupling, highlighting recent pioneering discoveries in which plasmon-induced interfacial charge- and energy-transfer processes enable the generation of hot charge carriers near the plasmonic-metal/semiconductor interfaces. This process is likely to increase the photoelectric conversion efficiency, constituting "plasmonic enhancement". We also discuss recent advances in the dynamics of surface plasmon relaxation and highlight exciting new possibilities for plasmonic metals and their interactions with strongly attached semiconductors to provide directional energy fluxes. While this new research area comes on the heels of much elaborate research on both metal and semiconductor nanomaterials, it provides a subtle but important refinement in understanding the optoelectronic properties of materials with far-reaching consequences from fundamental interface science to technological applications. We hope that this Account will contribute to a more systematic description of interface-coupled plasmonics, both fundamentally and in terms of applications toward the design of plasmonic heterostructured devices.