With a decadal long period (1998–2010) climate simulation using the Weather Research and Forecasting model at convection-permitting resolution (4 km) (WRF_CPM), the diurnal cycles of precipitation amount (PA), frequency (PF) and intensity (PI) and their related large-scale atmospheric circulations over eastern China are analyzed. The simulations are further compared against the CN05.1, CMORPH v1.0 and the ECMWF Re-Analysis Interim (ERAIN). Results show that WRF_CPM can reasonably represent the observed seasonal rainfall and the atmospheric circulations. As for the features at a sub-daily scale, WRF_CPM is superior at reproducing the diurnal amplitude of PF that is similar to PA in terms of the spatial distribution. Moreover, the diurnal peak timing of summer PF and PA over the three sub-regions, i.e., North China (NC), Yangtze-Huaihe River basin (YHR) and South China (SC), can be properly reproduced by WRF_CPM. The observed precipitation systems exhibit obvious eastward propagation from the Plateau to its downstream, which may be due to the solenoid circulations associated with the low-level anomalous wind and moisture convergence. However, they are almost overestimated by WRF_CPM and in turn causing overestimated precipitation along YHR. The early morning precipitation in WRF_CPM has a larger fraction than CMORPH, which is related to the overestimated nocturnal low-level jet. Whereas, due to the solar heating and the land-sea breezes, the late-afternoon precipitation peak is mainly located along the coasts of eastern China, which matches well with the vertical motion in WRF_CPM.
Read full abstract