The full-length cDNAs of amh and dax1 in the hermaphrodite, rice-field eel (Monopterus albus), were cloned and characterized in this study. Multiple sequence alignment revealed Dax1 was well conserved among vertebrates, whereas Amh had a low degree of similarity between different vertebrates. Their expression profiles in gonads during the course of sex inversion and tissues were investigated. The tissue distribution indicated amh was expressed mostly in gonads and was scarcely detectable in other tissues, whereas the expression of dax1 was widespread among the different tissues, especially liver and gonads. amh was scarcely detectable in ovaries whereas it was abundantly expressed in both ovotestis and testis. By contrast, dax1 was highly expressed in ovaries, especially in ♀IV (ovaries in IV stage), but it was decreased significantly in ♀/♂I (ovotestis in I stage). Its expression was increased again in ♀/♂III (ovotestis in III stage), and then decreased to a low level in testis. These significant different expression patterns of amh and dax1 suggest the increase of amh expression and the decline of dax1 expression are important for the activation of testis development, and the high level of amh and a low level of dax1 expression are necessary for maintenance of testis function.
Read full abstract