This study aims to design an all-optical transistor based on tunneling of light through frustrated total internal reflection. Under total internal reflection, the electromagnetic wave penetrates into the lower index medium. If a medium with high refractive index is placed close to the boundary of the first one, a portion of light leaks into the second medium. The penetrated electromagnetic field distribution can be influenced by another coherent light in the low refractive index medium via interference, leading to light amplification. Upon this technique, we introduce coherent all-optical transistors based on photonic crystal structures. Subsequently, we inspect the shortest pulse which is amplified by the designed system and also its terahertz repetition rate. We will show that such a system can operate in a cascade form. Operating in terahertz range and the amplification efficiency of around 20 are of advantages of this system.
Read full abstract