Transplacental docosahexaenoic-acid (DHA) supply for fetal development is regulated by placental DHA-lipid metabolism. Both maternal diabetes and obesity are linked to possible decreased fetal circulating DHA and increased placental DHA-lipids. Since myo-inositol is a promising intervention for gestational diabetes (GDM), we aimed to determine whether myo-inositol could rectify perturbations in placental DHA metabolism associated with maternal increasing glycemia and obesity and examine links with birthweight. Term placental villous explants from 17 women representing a range of BMIs and mid-gestational glycemia, were incubated with 13C-labeled-DHA for 48 h, in 0.3 µmol/L (control) or 60 µmol/L myo-inositol. Individual newly synthesized 13C-DHA-labeled lipid species were quantified by liquid-chromatography-mass-spectrometry. Compared with controls, incubation with myo-inositol decreased most 13C-DHA-lipids in placental explants from women with higher BMI or higher glycemia, but increased 13C-DHA-lipids with normal BMI or lower glycemia. Myo-inositol also increased 13C-DHA-labeled lipids in cases of lower birthweight centile, but induced decreases at higher centiles. Myo-inositol therefore lowered DHA-lipids in placenta with high basal placental DHA-lipid production (higher BMI and glycemia) but increased DHA-lipids where basal processing capacity is low. Myo-inositol thus moderates placental DHA metabolism towards a physiological mean which may in turn moderate birthweight.