In this paper, we report the global fuel energy consumption in heavy-duty road vehicles due to friction in engines, transmissions, tires, auxiliary equipment, and brakes. Four categories of vehicle, representing an average of the global fleet of heavy vehicles, were studied: single-unit trucks, truck and trailer combinations, city buses, and coaches. Friction losses in tribocontacts were estimated by drawing upon the literature on prevailing contact mechanics and lubrication mechanisms. Coefficients of friction in the tribocontacts were estimated based on available information in the literature for four cases: (1) the average vehicle in use today, (2) a vehicle with today׳s best commercial tribological technology, (3) a vehicle with today׳s most advanced technology based upon recent research and development, and (4) a vehicle with the best futuristic technology forecasted in the next 12 years. The following conclusions were reached:•In heavy duty vehicles, 33% of the fuel energy is used to overcome friction in the engine, transmission, tires, auxiliary equipment, and brakes. The parasitic frictional losses, with braking friction excluded, are 26% of the fuel energy. In total, 34% of the fuel energy is used to move the vehicle.•Worldwide, 180,000 million liters of fuel was used in 2012 to overcome friction in heavy duty vehicles. This equals 6.5millionTJ/a; hence, reduction in frictional losses can provide significant benefits in fuel economy. A reduction in friction results in a 2.5 times improvement in fuel economy, as exhaust and cooling losses are reduced as well.•Globally a single-unit truck uses on average 1500l of diesel fuel per year to overcome friction losses; a truck and trailer combination, 12,500l; a city bus, 12,700l; and a coach, 7100l.•By taking advantage of new technology for friction reduction in heavy duty vehicles, friction losses could be reduced by 14% in the short term (4 to 8 years) and by 37% in the long term (8 to 12 years). In the short term, this would annually equal worldwide savings of 105,000 million euros, 75,000 million liters of diesel fuel, and a CO2 emission reduction of 200 million tones. In the long term, the annual benefit would be 280,000 million euros, 200,000 million liters of fuel, and a CO2 emission reduction of 530 million tonnes.•Hybridization and electrification are expected to penetrate only certain niches of the heavy-duty vehicle sector. In the case of city buses and delivery trucks, hybridization can cut fuel consumption by 25% to 30%, but there is little to gain in the case of coaches and long-haul trucks. Downsizing the internal combustion engine and using recuperative braking energy can also reduce friction losses.•Electrification is best suited for city buses and delivery trucks. The energy used to overcome friction in electric vehicles is estimated to be less than half of that of conventional diesel vehicles.Potential new remedies to reduce friction in heavy duty vehicles include the use of advanced low-friction coatings and surface texturing technology on sliding, rolling, and reciprocating engine and transmission components, new low-viscosity and low-shear lubricants and additives, and new tire designs that reduce rolling friction.