Aberrant 5' CpG island methylation is an alternative mechanism of gene inactivation during the development of cancer as demonstrated for several tumor-suppressor genes. Also, marked relationship of microsatellite instability (MSI) and DNA methylation has been reported in sporadic colorectal cancer, which is a result of epigenetic inactivation of hMLH1 in association of promoter hypermethylation. In the present study, we investigated the 5' CpG island hypermethylation of hMLH1, E-cadherin and p16 in 61 primary gastric cancers (GCs) by using combined bisulfite restriction analysis (COBRA) and methylation-specific PCR (MSP), and their MSI status. Of 61 GCs investigated, 5 (8.1%) tumors presented hMLH1 methylation, 16 (26.2%) and 25 (40.9%) showed E-cadherin and p16 methylation respectively, and 8 (13.1%) presented high-frequency MSI (MSI-H). Of the 8 MSI-H patients, 5 presented hMLH1 methylation, whereas no low-frequency MSI (MSI-L) and microsatellite stable (MSS) cases exhibited hMLH1 methylation (5/8 vs. 0/43, p < 0.00001). Furthermore, these patients also presented E-cadherin and p16 hypermethylation. Our data showed a significant correlation between hMLH1 methylation and MSI in GC, and suggested that a common mechanism of aberrant de novo methylation can be postulated in these cancers.