Abstract High grade gliomas (HGG) are aggressive primary brain malignancies typified by diffuse invasion, genetic heterogeneity, and a universally fatal outcome. MRI-defined contrast-enhancing (CE) tumor burden serves as the clinical standard that guides maximal surgical resection and post-therapy response assessment. However, HGGs also comprise an invasive non-enhancing (NE) tumor margin that extends beyond the CE core and harbors the cells that contribute to recurrence. Sampling restrictions have hindered the comprehensive study of these NE HGG cell populations driving tumor progression. Herein, we present an integrated multi-omic analysis of 313 spatially matched multi-regional CE and NE tumor biopsies from 68 HGG patients, performing whole exome and RNA sequencing of both IDH wild-type and IDH mutant HGGs. We report spatially restricted molecular profiles in IDH-mutant HGG, highlighting a concern for sampling bias given the importance of molecular diagnosis and prognostication in IDH-mutant HGG. Regardless of IDH status, we found that NE tumor regions harbored the highest proportion of private mutations, which reflects an increased development of regional genomic complexity in infiltrative tumor. The multiregional genomic profiling of our IDH wild-type HGG cohort reveals that EGFR and NF1 somatic alterations occur as mutually exclusive events in 98.7% of tumors. However, we resolved rare low allele frequency co-alterations of EGFR and NF1 within the NE region. We find this co-occurrence enriched in recurrent tumors, pointing to the early emergence of NF1 inactivation in the NE regions. We constructed genomic models predictive of recurrent disease from both NE and CE regions, which highlight the occurrence of clonal EGFR copy number alterations and NF1 loss as clonal or subclonal events, respectively, emphasizing the regional and temporal complexity of well-studied canonical driver alterations. We detailed the spatially unique acquisition of multiple distinct EGFR alterations giving rise to intra-tumoral EGFR mosaicism, a challenge in the implementation of EGFR directed therapies. Our study also identified two transcriptomic clusters delineated by the significant overrepresentation of neuronal (NEU) and glycolytic/plurimetabolic (GPM) pathway-based functional states in the NE region. NE regions of the NEU subtype harbor the greatest proportion of private mutations, suggesting these infiltrative tumor cells accumulate alterations without clonal expansion. GPM populations conversely displayed a less branched phylogeny and were transcriptionally enriched in immune cell signatures. This phenotypic dichotomy between GPM and NEU populations supports the growing body of evidence that invasive GBM cells either take on a neuronal phenotype for active invasion or a more metabolic phenotype involving interaction with astrocytes, other glial cells, and infiltrating immune cells. Citation Format: Mylan R. Blomquist, Leland S. Hu, Fulvio D'Angelo, Taylor M. Weiskittel, Francesca P. Caruso, Shannon P. Fortin Ensign, Christopher Sereduk, Gustavo De Leon, Lee Curtin, Javier Urcuyo, Ashlynn Gonzalez, Ashley Nespodzany, Teresa Noviello, Jennifer M. Eschbacher, Kris A. Smith, Peter Nakaji, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Devi Patra, Naresh Patel, Mark Lyons, Kliment Donev, Maciej Mrugala, Alyx Porter, Anna Lasorella, Kristin R. Swanson, Michele Ceccarelli, Antonio Iavarone, Nhan L. Tran. Multiregional sampling of high grade glioma identifies regional biologic signatures [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1507.