The study of particle packing models for binary mixtures is important in the field of granular materials, from both theoretical and practical perspectives. A number of particle packing models have been developed for predicting packing density (or void ratio) of a binary mixture. However, the measured results and the predicted values do not always agree with each other, particularly in the range of fines content between 25 and 50%. It is postulated herein that the discrepancies between the measured results and the predicted values are primarily due to the incorrect assumptions used in the existing models. In the existing models, the packing density is determined from one of the following two assumed mechanisms of particle mixing: (1) the mixed packing has a dominant large-particle skeleton and the small particles fill the voids of the large-particle skeleton, or (2) the mixed packing has a dominant small-particle skeleton and the large particles are embedded in the small-particle skeleton. It is obvious that the first assumed mechanism is only applicable for mixtures with low fines content, whereas the second assumed mechanism is only applicable to mixtures with high fines content. Therefore, the predictions from existing models are unsuitable for mixtures with medium fines content, such as a mixture of fines content between 25 and 50%. In this study, a 3-D discrete element simulation is carried out to show that, for a mixture of medium fines content, the packing structure has a dual-skeleton, which is neither dominated by a large nor small-particle skeleton. Then, we postulate that, in the mixed packing, both mechanisms can take place: filling of small particles and embedment of large particles. The concepts of “dual-skeleton index” and “index size” are proposed to account for the interactive effects of filling and embedment. Based on this postulation, we develop an analytical method, which has the capability of predicting minimum void ratio for sand–silt mixtures with various fines contents. The developed model is then validated by the experimental results obtained from 16 types of sand–silt mixtures.
Read full abstract