5,6,11,12-tetraphenylnaphthacene (rubrene) exhibits resonant energy properties (E S1,rub ≈ 2E T1,rub), resulting in rubrene-based organic light-emitting diode (OLED) devices that undergo the singlet fission (STT) process at room temperature. This unique process gives rise to a distinct magneto-electroluminescence (MEL) profile, differing significantly from the typical intersystem crossing (ISC) process. Therefore, in this paper, we investigate charge generation and separation in the interconnector, and the mechanism of charge transport in tandem OLEDs at room temperature using MEL tools. We fabricate tandem OLEDs comprising green (Alq3) and yellow (Alq3:rubrene) electroluminescence (EL) units using different interconnectors. The results demonstrate that all devices exhibited significant rubrene emission. However, the MEL did not exhibit an STT process with an increasing magnetic field, but rather a triplet–triplet annihilation (TTA) process. This occurrence is attributed to direct carrier trapping within doped EL units, which hinders the transport of rubrene trapped charges, consequently prolonging the lifetime of triplet excitons (T1,rub). Thus, the increased T1,rub concentration causes TTA to occur at room temperature, causing the rapid decrease of MEL in all devices under high magnetic fields. In devices where only the TTA process occurs, the TTA increases with the increasing current. Consequently, the high magnetic field of devices A–C is only related to TTA. Notably, there exists a high magnetic field TTA of device D in the Alq3/1,4,5,8,9,11-Hexaazatriphenylene-hexacarbonitrile interconnector regardless of the current. This occurs because both EL units in the device emit simultaneously, resulting in the triplet-charge annihilation process of Alq3 in the high magnetic field of the MEL. Moreover, the rapid increase in MEL at low magnetic field across all devices is attributed to the ISC between Alq3 polaron pairs. This entire process involves Förster and Dexter energy transfer. This article not only provides novel insights into charge generation and separation in the interconnector but also enhances our understanding of the microscopic mechanisms in tandem OLED devices.