The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is generated as a consequence of oxidative stress and can readily react with nucleophilic sites of proteins (e.g., histidine residues), mainly via a Michael addition. The formation of such lipid-protein conjugates can alter protein properties and biological functions, thus leading to highly deleterious effects. The present work describes a rapid (very limited sample preparation) and sensitive (low-femtomole range) procedure to identify HNE-modified peptides (Michael adducts) within unfractionated tryptic digests. The protocol involves the formation of dinitrophenylhydrazones of the Michael adducts, when using 2,4-dinitrophenylhydrazine as reactive matrix, followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The hydrazone derivatives present high desorption/ionization yield and can thus be preferentially detected compared to unmodified peptides. The MALDI mass spectrum obtained is therefore drastically different from the one obtained with the classical 4-hydroxy-alpha-cyanocinnamic acid matrix. Moreover, the presence of HNE, or more generally speaking carbonylated peptides, could be highlighted by 180 mass units differences (corresponding to the dinitrophenylhydrazone moiety) between these two MALDI mass spectra. Further information (e.g., localization/identification of the modified residues, peptide sequences) could be obtained by performing MALDI postsource decay (or electrospray) MS/MS experiments on the ions of interest.