The technique of dual-energy contrast enhanced mammography (CEM) visualizes iodine uptake in cancerous breast lesions following an intravenous injection of a contrast medium. The CEM image is generated by recombining two images acquired in rapid succession: a low energy image, with a mean energy below the iodine K-edge, and a higher energy image. The first part of this study examines the use of both commercially available and custom made phantoms to investigate iodine imaging under different imaging conditions, with the focus on quality control (QC) testing. Four CEM equipped systems were included in the study, with units from Fujifilm, GE Healthcare, Hologic and Siemens-Healthineers. The CEM parameters assessed in part I were: (1) image signal as a function of iodine concentration, measured in breast tissue simulating backgrounds of varying thickness and adipose/glandular compositions; (2) normal breast texture cancellation in homogeneous and structured backgrounds; (3) visibility of iodinated structures. For all four systems, a linear response to iodine concentration was found but the degree to which this was independent of background composition differed between the systems. Good cancellation of the glandular tissue inserts was found on all the units. Visibility scores of iodinated targets were similar between the four systems. Specialized phantoms are needed to fully evaluate important CEM performance markers, such as system response to iodine concentration and the ability of the system to cancel background texture. An extensive evaluation of the iodine signal imaging performance is recommended at the Commissioning stage for a new CEM device.
Read full abstract