A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. They are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. While plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.
Read full abstract