Abstract

Based on systematic surface observations, experimental measurements on the fatigue limits of differently oriented copper single crystals cyclically deformed at constant plastic strain amplitudes are summarized, and an orientation dependence of the fatigue limit is sketched. It was found that the fatigue limits of crystals depend mainly upon the low-strain-amplitude dislocation structures, which are characteristic of the particular crystal orientations. When multiple-slip deformation is the main mode of deformation and ultimately produces stable lowenergy dislocation structures such as labyrinth and cell structures, the fatigue limit can be improved notably.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call