There is a growing demand for sustainable solutions in civil engineering concerning the carbon footprint of cementitious composites. Alkali-Activated Binders (AAB) are materials with great potential to replace ordinary Portland cement (OPC), with similar strength levels and lower environmental impact. Despite their improved environmental performance, their durability remains a gap in the literature, influenced by aspects of mechanical behavior, physical properties, and microstructure. This paper aims to assess the impact of steel slag aggregates and curing temperature of a proposed AAB based concrete formulation by characterizing fresh state, mechanical behavior, and microstructure. The proposed AAB is composed of fly ash (FA) and basic oxygen furnace (BOF) steel slag (SS) as precursors, sodium silicate and sodium hydroxide solution as activators, in total replacement of OPC, using baosteel slag short flow (BSSF) SS as aggregate in comparison with natural aggregate. The concrete formulation was designed to achieve a high-performance concrete (HPC) and a self-compacting concrete (SCC) behavior. Mechanical characterization encompassed hardened (compressive strength and Young’s modulus), fresh state (J-ring, slump flow, and T50), and durability tests (scanning electronic microscopy, water penetration under pressure, and chloride ion penetration). The compressive strength (64.1 ± 3.6 MPa) achieves the requirements of HPC, while the fresh state results fulfill the SCC requirements as well, with a spread diameter from 550 mm to 650 mm (SF-1 class). However, the flow time ranges from 3.5 s to 13.8 s. There was evidence of high chloride penetrability, affected by the lower electrical resistance inherent to the material. Otherwise, there was a low water penetration under pressure (3.5 cm), which indicates a well-consolidated microstructure with low connected porosity. Therefore, the durability assessment demonstrated a divergence in the results. These results indicate that the current durability tests of cementitious materials are not feasible for AAB, requiring adapted procedures for AAB composite characterization.
Read full abstract