Manipulation of neuronal activity during the early postnatal period in monkeys has been largely limited to permanent lesion studies, which can be impacted by developmental plasticity leading to reorganization and compensation from other brain structures that can interfere with the interpretations of results. Chemogenetic tools, such as DREADDs (designer receptors exclusively activated by designer drugs), can transiently and reversibly activate or inactivate brain structures, avoiding the pitfalls of permanent lesions to better address important developmental neuroscience questions. We demonstrate that inhibitory DREADDs in the amygdala can be used to manipulate socioemotional behavior in infant monkeys. Two infant rhesus monkeys (1 male, 1 female) received AAV5-hSyn-HA-hM4Di-IRES-mCitrine injections bilaterally in the amygdala at 9 months of age. DREADD activation after systemic administration of either clozapine-N-oxide or low-dose clozapine resulted in decreased freezing and anxiety on the human intruder paradigm and changed the looking patterns on a socioemotional attention eye-tracking task, compared with vehicle administration. The DREADD-induced behaviors were reminiscent of, but not identical to, those seen after permanent amygdala lesions in infant monkeys, such that neonatal lesions produce a more extensive array of behavioral changes in response to the human intruder task that were not seen with DREADD-evoked inhibition of this region. Our results may help support the notion that the more extensive behavior changes seen after early lesions are manifested from brain reorganization that occur after permanent damage. The current study provides a proof of principle that DREADDs can be used in young infant monkeys to transiently and reversibly manipulate behavior.