When a rigid scene is imaged by a moving camera, the set of all displacements of all points across multiple frames often resides in a low-dimensional linear subspace. Linear subspace constraints have been used successfully in the past for recovering 3D structure and 3D motion information from multiple frames (e.g., by using the factorization method of Tomasi and Kanade (1992, International Journal of Computer Vision, 9:137–154)). These methods assume that the 2D correspondences have been precomputed. However, correspondence estimation is a fundamental problem in motion analysis. In this paper we show how the multi-frame subspace constraints can be used for constraining the 2D correspondence estimation process itself. We show that the multi-frame subspace constraints are valid not only for affine cameras, but also for a variety of imaging models, scene models, and motion models. The multi-frame subspace constraints are first translated from constraints on correspondences to constraints directly on image measurements (e.g., image brightness quantities). These brightness-based subspace constraints are then used for estimating the correspondences, by requiring that all corresponding points across all video frames reside in the appropriate low-dimensional linear subspace. The multi-frame subspace constraints are geometrically meaningful, and are {not} violated at depth discontinuities, nor when the camera-motion changes abruptly. These constraints can therefore replace {heuristic} constraints commonly used in optical-flow estimation, such as spatial or temporal smoothness.