To study the effects of low-density lipoprotein receptor-related protein 5 (LRP5) gene mutations on bone, and to open up our view of LRP5 and Wnt pathways on bone mass regulation. Three patients with increased bone mineral density or thickened bone cortex were included, who were 30-year-old, 22-year-old and 50-year-old men, respectively. The latter two patients were son and father of a same family. The characteristics of bone X-rays were evaluated in detail. Bone turnover markers were detected, such as procollagen type 1 amino-terminal peptide (P1NP), alkaline phosphatase (ALP), and type 1 collagen carboxyl terminal peptide (β-CTX). Dual energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) at lumbar spine and proximal femur of the patients. The targeted next-generation sequencing (NGS) technology was used to detect pathogenic gene mutations, which were further verified by Sanger sequencing. Moreover, the gene mutation spectrum and phenotypic characteristics of reported patients with LRP5 gain-of-function mutations were summarized by reviewing the literature. The main characteristics of the first patient were headache, facial paralysis, high BMD (lumbar vertebrae 1–4: 1.877 g/cm2, Z-score: 5.8; total hip: 1.705 g/cm2, Z-score: 5.7), slightly increased P1NP (87.0 ng/mL) and β-CTX (0.761 ng/mL) level, and with thickened bone cortex, especially the cranial vault. The latter two patients showed enlargement of the mandible and enlarged osseous prominence of the tours palatinus. X-rays showed that the bone cortex of skull and long bones were thickened. The bone turnover markers and BMD were normal. All three cases carried novel missense mutations in LRP5 gene, which were mutation in exon 3 (c.586 T > G, p.Trp196Gly) of the first patient, and mutation in exon 20 (c.4240C > A, p.Arg1414Ser) of the latter two patients. Combined with the reported literature, a total of 19 gain-of-function mutations in LRP5 were detected in 113 patients from 33 families. Hotspot mutations included c.724G > A, c.512G > T and c.758C > T. Furthermore, mutations in the exon 3 of LRP5 may cause severe phenotypes. LRP5 gain-of-function mutations can lead to rare autosomal dominant osteosclerosis type Ι (ADO Ι), which was characterized by increased bone mass and thickened bone cortex. In-depth research on the Wnt pathway will be benefit for discovering important mechanisms of bone mass regulation.
Read full abstract