Navigation systems are extensively used in everyday life, but the conventional A* algorithm has several limitations in path planning applications within these systems, such as low degrees of freedom in path planning, inadequate consideration of the effects of special regions, and excessive nodes and turns. Addressing these limitations, an enhanced A* algorithm was proposed using regular hexagonal grid mapping. First, the approach to map modeling using hexagonal grids was described. Subsequently, the A* algorithm was refined by optimizing the calculation of movement costs, thus allowing the algorithm to integrate environmental data more effectively and flexibly adjust node costs while ensuring path optimality. A quantitative method was also introduced to assess map complexity and adaptive heuristics that decrease the number of traversed nodes and increase the search speed. Moreover, a turning penalty measure was implemented to minimize unnecessary turns on the planned paths. Simulation results confirmed that the improved A* algorithm exhibits superior performance, which can dynamically adjust movement costs, enhance search efficiency, reduce turns, improve overall path planning quality, and solve critical path planning issues in navigation systems, greatly aiding the development and design of these systems and making them better suited to meet modern navigation requirements.