Zircon formation and modification during magmatic crystallization and high-grade metamorphism are explored using TIMS and LA-ICP-MS U–Pb geochronology, Lu–Hf isotope chemistry, trace element analysis and textural clues on zircons from the Koraput alkaline intrusion, Eastern Ghats Belt (EGB), India. The zircon host-rock is a granulite-facies nepheline syenite gneiss with an exceptionally low Zr concentration, prohibiting early magmatic Zr saturation. With zircon formation occurring at a late stage of advanced magmatic cooling, significant amounts of Zr were incorporated into biotite, nearly the only other Zr-bearing phase in the nepheline syenite gneisses. Investigated zircons experienced a multi-stage history of magmatic and metamorphic zircon growth with repeated solid-state recrystallization and partial dissolution–precipitation. These processes are recorded by complex patterns of internal zircon structures and a wide range of apparently concordant U–Pb ages between 869±7Ma and 690±1Ma. The oldest ages are interpreted to represent the timing of the emplacement of the Koraput alkaline complex, which significantly postdates the intrusion ages of most of the alkaline intrusion in the western EGB. However, Hf model ages of TDM=1.5 to 1.0Ga suggest an earlier separation of the nepheline syenite magma from its depleted mantle source, overlapping with the widespread Mesoproterozoic, rift-related alkaline magmatism in the EGB. Zircons yielding ages younger than 860Ma have most probably experienced partial resetting of their U–Pb ages during repeated and variable recrystallization events. Consistent youngest LA-ICP-MS and CA-TIMS U–Pb ages of 700–690Ma reflect a final pulse of high-grade metamorphism in the Koraput area and underline the recurrence of considerable orogenic activity in the western EGB during the Neoproterozoic. Within the nepheline syenite gneisses this final high-grade metamorphic event caused biotite breakdown, releasing sufficient Zr for local saturation and new subsolidus zircon growth along the biotite grain boundaries.