This paper describes the revision of the thyroid dosimetry system in Ukraine using new, recently available data on (i) revised 131I thyroid activities derived from direct thyroid measurements done in May and June 1986 in 146,425 individuals; (ii) revised estimates of 131I ground deposition density in each Ukrainian settlement; and (iii) estimates of age- and gender-specific thyroid masses for the Ukrainian population. The revised dosimetry system estimates the thyroid doses for the residents of the settlements divided into three levels depending on the availability of measurements of 131I thyroid activity among their residents. Thyroid doses due to 131I intake were estimated in this study for different age and gender groups of residents of 30,353 settlements in 24 oblasts of Ukraine, Autonomous Republic Krym, and cities of Kyiv and Sevastopol. Among them, dose estimates for 835 settlements were based on 131I thyroid activities measured in more than ten residents (the first level), for 690 settlements based on such measurements done in neighboring settlements (the second level), and for 28,828 settlements based on a purely empirical relationship between the thyroid doses due to 131I intake and the cumulative 131I ground deposition densities in settlements (the third level). The arithmetic mean of the thyroid doses due to 131I intake among 146,425 measured individuals was 0.23Gy (median of 0.094Gy); about 99.8% of them received doses less than 5Gy. The highest oblast-average population-weighted thyroid doses were estimated for residents of Chernihiv (0.15Gy for arithmetic mean and 0.060Gy for geometric mean), Kyiv (0.13 and 0.051Gy) and Zhytomyr (0.12 and 0.049Gy) Oblasts followed by Rivne (0.10 and 0.039Gy) and Cherkasy (0.088 and 0.032Gy) Oblasts, and Kyiv City (0.076 and 0.031Gy). The geometric mean of thyroid doses estimated in this study for the entire Ukraine essentially did not change in comparison with a previous estimate, 0.020 vs. 0.021Gy, respectively. The ratio of geometric mean of oblast-specific thyroid doses estimated in the present study to previously calculated doses varied from 0.51 to 3.9. The highest increase in thyroid doses was found in areas remote from the Chornobyl nuclear power plant with a low level of radioactive contamination: by 3.9 times for Zakarpatska Oblast, 3.5 times for Luhansk Oblasts and 2.9 times for Ivano-Frankivsk Oblast. The developed thyroid dosimetry system is being used to revise the thyroid doses due to 131I intake for the individuals of post-Chornobyl radiation epidemiological studies: the Ukrainian-American cohort of individuals exposed during childhood and adolescence, the Ukrainian in utero cohort, and the Chornobyl Tissue Bank.