Present of pharmaceutical as the emerging pollutants arise the concerns of environment community regarding the potential impact of acetaminophen (ACT) on ecological and human health. Adsorption process has been proven as an effective treatment being activated carbon as the adsorbent to remove many types of pollutant including low concentration of pollutants. However, on large scale industrial processes, utilisation of activated carbon is limited because of their high production cost. Synthesis of waste materials as a precursor of adsorbent is an attractive approach in sustainable management and economic availability. In this study, the removal of ACT from aqueous solution by chemically treated chicken bone (AC) waste was investigated. The adsorption process was conducted in a batch adsorption and affected by several experimental parameters including contact time, pH, adsorbent dose, initial concentration and temperature. With AC dosage of 0.1 g about 93 % of 1,000 mg/L ACT was removed from the aqueous solution that had pH of 2 and temperature of 25 °C. Kinetic of ACT adsorption was well described by pseudo-second order kinetic model. Meanwhile, effect of initial concentration of acetaminophen adsorption data was fitted well with Freundlich isotherm model with an R2 of 0.9909. Finally, the data obtained from effect of temperature was used to determine the adsorption thermodynamic including the enthalpy, ΔH, Gibbs energy, ΔG and entropy, ΔS. It was found that the ΔG was negative at all temperature while both, ΔH and ΔS was also negative between temperatures of 25 °C to 70 °C indicating the process of ACT adsorption was exothermic reaction and the adsorption reaction is spontaneous at low temperature.