The soil-washing technique has been successfully utilized for the remediation of PFAS-contaminated soils. Prior studies have shown that the organic carbon (OC) content and grain size of soil determined the efficiency of PFAS removal during washing. However, most of the past studies have focused on soils with a low OC content, typically ranging from 0–3%. In this study, we explored the use of a novel process where soil washing was combined with air bubbling (or foam fractionation) to aid in the removal of PFAS from high OC-content soils (~4–20%). Treatment with air bubbling of high OC soil (~20%) with perfluorobutane sulfonate (PFBS) and perfluorooctanoate (PFOA) did not enhance their removal, as they featured low surface activity. However, we observed an improvement in the extraction of perfluorooctane sulfonate (PFOS) from 27% to 42% with bubbling, consistent with the higher surface activity of PFOS compared to PFOA and PFBS. Perfluorodecanoic acid (PFDA) was irreversibly adsorbed to the high OC soil and was not removed efficiently by both bubbling and soil washing. A slight improvement in PFDA removal (6–13%) was observed when a co-surfactant (cetyltrimethylammonium chloride) was added and when the OC content was reduced to ~4% by the addition of nonorganic sand to the contaminated soil prior to soil washing. This suggested that the interaction of PFDA with OC was the dominant factor determining its extraction from soil. In conclusion, our results indicated that soil washing alone was sufficient for the removal of short-chain PFAS from soil. Although bubbling had a mild effect on the removal of some long-chain PFAS from the solution, it did not help in the overall removal of PFAS from high OC soils, highlighting the difficulty in the treatment of high OC-content soils and that immobilization of PFAS would be an ideal approach in managing such contaminated sites.
Read full abstract